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Abstract

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a group of common human birth 

defects with complex etiology. Although genome-wide association studies have successfully 

identified a number of risk loci, these loci only account for about 20% of the heritability of 

orofacial clefts. The “missing” heritability may be found in rare variants, copy number variants, or 

interactions. In this study, we investigated the role of low-frequency variants genotyped in 1995 

cases and 1626 controls on the Illumina HumanCore+Exome chip. We performed two statistical 

tests, Sequence Kernel Association Test (SKAT) and Combined Multivariate and Collapsing 

(CMC) method using two minor allele frequency cutoffs (1% and 5%). We found that a burden of 

low-frequency coding variants in N4BP2, CDSN, PRTG, and AHRR were associated with 

increased risk of NSCL/P. Low-frequency variants in other genes were associated with decreased 

risk of NSCL/P. These results demonstrate that low-frequency variants contribute to the genetic 

etiology of NSCL/P.
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Introduction

Clefts of the lip with or without cleft palate (CL/P) are among the most common human 

birth defects [Leslie and Marazita 2013; Marazita 2012]. Approximately 30% of clefts are 

syndromic and have co-occurring structural or cognitive anomalies and are caused primarily 

by chromosomal anomalies or mutations in single genes [Mossey et al. 2009]. In contrast, 

the remaining 70% of CL/P occur in isolation and are considered nonsyndromic [Mossey et 

al. 2009]. Nonsyndromic CL/P (NSCL/P) has agenetically complex etiology, caused by 

multiple interacting genetic and environmental risk factors. Many approaches have been 

used to identify genetic risk factors for NSCL/P including linkage, candidate gene, and 

genome-wide association studies (GWAS). Independent GWAS in several different 

populations and family types have revealed the significant genetic heterogeneity with at least 

15 genetic loci conferring risk for NSCL/P [Beaty et al. 2010; Birnbaum et al. 2009; Grant 

et al. 2009; Leslie et al. 2016; Mangold et al. 2010; Sun et al. 2015; Wolf et al. 2015]. For 

some of these loci, such as IRF6 and NOG, follow-up studies have identified functional 

variants that may directly influence craniofacial development [Leslie et al. 2015; Rahimov et 

al. 2008].
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Despite these successes in identifying loci associated with NSCL/P, we estimate these 

known loci only account for a small proportion (about 20%) of the heritability in any 

population. GWAS typically focus on single variant analysis of common SNPs (typically 

with minor allele frequency (MAF) >5%). Other analyses not covered in traditional GWAS 

have been proposed to identify the “missing heritability” of complex disease including rare 

variants, copy number variation, and gene × environment and gene × gene interactions. 

Rare-variant studies for NSCL/P have largely been limited to resequencing of single 

candidate genes in small samples [Leslie and Murray 2012]. Although there are many 

compelling private variants [Jezewski et al. 2003; Leslie et al. 2012; Liu et al. 2016], there 

has been only limited support for a burden of rare variants [Al Chawa et al. 2014; Leslie et 

al. 2012; Suzuki et al. 2009]. We previously sequenced thirteen GWAS or candidate loci in 

1,500 case-parent trios and failed to identify a burden of rare variants using several 

annotation categories. However, an agnostic window-based method identified few regions of 

over-transmission of rare variants [Leslie et al. 2015]. To date, the only genome-wide study 

of rare variants has been exome sequencing of 55 distant relative pairs [Bureau et al. 2014]. 

Therefore, a genome-scale examination of rare variants has not been conducted for NSCL/P. 

In this study, we sought to investigate the role of low-frequency coding variants (MAF<1% 

and MAF<5%) by genotyping 1995 cases and 1626 controls on an exome chip array and 

performing gene-based association tests.

Methods

Study Participants

The participants for this study consist of 1995 unrelated cases with NSCL/P and 1626 

unrelated controls selected from a larger set of cases, controls, and families recruited from 

11 countries across North America, Latin America, Asia, and Europe (Table 1) [Leslie et al. 

2016]. Controls had no known history of orofacial clefts (OFCs) nor other craniofacial 

anomalies. Cases included probands from unrelated families and unrelated individuals 

recruited as singleton cases. All sites had local IRB approval as well as approval at the 

University of Iowa or the University of Pittsburgh.

Genotyping

Full details of the genotyping, quality control, and imputation were previously described 

[Leslie et al. 2016]. Briefly, all samples were genotyped for approximately 580,000 SNPs 

using an Illumina HumanCore+Exome chip with custom content. Quality control included 

filters for >2% missing call rate, deviations from Hardy-Weinberg Equilibrium (p<0.0001) 

in participants with genetically confirmed European ancestry, and monomorphic SNPs.

Principal components analysis (PCA) was performed for a subset of unrelated participants 

using a pruned set of 67K SNPs in low linkage disequilibrium to identify the appropriate 

principal components (PCs) of ancestry within these data. The resulting eigenvectors were 

projected onto the remaining set of participants. The resulting PCs strongly tracked global 

recruitment site and self-reported race/ethnicity. Further, though PCs of ancestry represent 

orthogonal information across the total multiethnic sample, individual PCs may be highly 

collinear in specific strata. Therefore, in addition to the PCs generated across all participants, 
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PCs of ancestry were also generated within each continental group (European, Central/South 

American, and Asian) for use in stratified analyses.

SNP Selection

To identify the subset of coding variants, we obtained the genomic coordinates for exons of 

the canonical gene transcripts from the UCSC Genome Browser. All SNPs genotyped on the 

Illumina HumanCore+Exome chip and located within these exons with at least one observed 

minor allele and a maximum minor allele frequency of 5% were considered for statistical 

analyses (totaling 155,361 genotyped variants).

Imputation of sporadic missingness

We imputed sporadic missing genotypes using the IMPUTE2 software and the 1000 

Genomes Project (phase 3 release) as the reference panel. Imputation accuracy was assessed 

by masked variant analysis, demonstrating high quality imputation, with mean concordance 

of 0.995 for SNPs with minor allele frequency (MAF) < 0.05 and 0.960 for SNPs with MAF 

≥ 0.05. The “most-likely” genotypes (i.e. genotypes with the highest probability, Q) were 

selected for statistical analysis if and only if the highest probability was Q > 0.9. Genotypes 

that could not be imputed to this degree of certainty remained missing in the final analysis.

Statistical Analyses

We tested gene-based association for low-frequency variants using two tests implemented in 

RVTESTS [Zhan et al. 2016]. The first, the combined multivariate and collapsing (CMC) 

method, is a burden test that collapses variants into a single score [Li and Leal 2008]. 

Because burden tests make the assumption that all variants in the gene have the same 

direction of effect, we also utilized a second test, the sequence kernel association test 

(SKAT), which can detect sets of variants with opposite effects [Wu et al. 2011]. The first 18 

PCs of ancestry were included in the combined analyses to protect against genomic inflation 

due to population structure. For stratified analyses, we adjusted for the first 5 population-

specific PCs in European and Central/South American samples, and the first 3 PCs in the 

Asian sample. 14,664 genes with at least two variants were included in the analyses. P-

values less-than 3.4 × 10-6 were considered genome-wide significant (i.e. 0.05/14,664) and 

p-values less than 1.0 × 10-4 were considered to be suggestive. For genes showing evidence 

of association, we scrutinized the quality of genotype calling by inspecting clustering in 

allele intensity plots. We performed functional annotation enrichment analysis on genes 

using ToppFun from the ToppGene Suite [Chen et al. 2009] and assessed significance using 

Bonferroni adjusted p-values. For comparison, we also performed analysis from a selected 

list of genes implicated in human OFCs by GWAS or replicated candidate gene studies, OFC 

syndromes, or animal models [Beaty et al. 2016; Dixon et al. 2011; Leslie and Marazita 

2013] (Supplemental Table II).

Results

We performed analyses of low-frequency variants in our multiethnic population and then 

stratified into three ancestry groups: Europeans, Latin Americans, and Asians (Figure 1, 

Supplemental Figures 1-4). Two genes achieved genome-wide significance. Variants in 
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N4BP2 with frequencies less than 5% were associated with NSCL/P in the Latin American 

population (pSKAT.5 = 5.04 × 10-7) (Table II, Supplemental Figure 4). The second, PFAS, 

was associated in all populations combined and in the Latin American subgroup; however, 

the signal was driven by a single common variant that ultimately failed subsequent quality 

control checks. When we repeated the analyses excluding this SNP, there was no evidence 

that PFAS variants are associated with NSCL/P (p=0.28).

We also examined genes with p-values less than 1 × 10-4 as having suggestive evidence of 

association (Table II). In all populations combined, we identified an association with PRTG 
(pCMC.1 = pCMC.5 = 3.48 × 10-5), DSC1 (pCMC.5 = 9.03 × 10-5), and ALDH5A1 (pSKAT.5 = 

6.68 × 10-5). In the European subgroup, we identified associations in CDSN (pCMC.1 = 1.29 

× 10-5), AHRR (pCMC.1 = pCMC.5 = 2.65 × 10-5), and GTPBP3 (pSKAT.5 = 8.62 × 10-5). In 

the Latin American and Asian subgroups, nine and eight suggestive signals were identified, 

respectively (Table II). Among these, several showed consistent results between CMC and 

SKAT analyses including CCDC77 in the Latin American group; and SMIM21, CCDC62, 

and RNU5D in the Asian subgroup.

SKAT and CMC both test groups of SNPs in aggregate, but it is possible that not all of the 

variants are truly contributing to disease. In addition, the aggregated low-frequency variants 

may not increase risk, but rather appear at higher frequencies in controls, suggesting a 

protective effect. Therefore, we examined the frequencies of the coding variants in each gene 

(Supplementary Table I) and performed single variant tests to determine the direction of 

effect and whether the association signal was driven by a minority of the variants considered 

in the analysis. Variants in AHRR, CDSN, N4BP2, and PRTG were found at generally 

higher frequencies in cases compared to controls indicating that low-frequency variants in 

these genes increase risk of NSCL/P. Of these, N4BP2 was significant only in the MAF<5% 

analysis and two variants with MAF>1% appeared to be driving the association. CDSN was 

also notable in that all five variants had higher frequencies in cases than in controls, but no 

single variant dominated the signal. With the exception of ALDH5A1, HEATR8, and 

YEATS2, genes for which the directions of association were unclear, low-frequency variants 

in the remaining 15 genes (i.e., SMIM21, CCDC62, DSC1, etc.) were generally found at 

higher frequencies in controls and therefore appeared to decrease risk for NSCL/P.

We performed functional enrichment analysis on the group of genes surpassing our 

suggestive p-value threshold. We noted that this gene list was not enriched for Gene 

Ontology (GO) terms related to molecular functions or biological processes, nor did the 

genes group into particular pathways. However, two input genes (DSC1 and CDSN) were 

annotated for the cellular component GO term “desmosome”, resulting in a statistical 

enrichment of the term (p = 4.01 × 10-4; Bonferroni adjusted p = 0.02). Interestingly, there 

was a slight enrichment for interactions with CEP120, a centrosomal protein associated with 

Joubert syndrome and other ciliopathies; three input genes were annotated for this 

interaction (YEATS2, KIAA0586, and CCDC7; p = 8.89 × 10-5; Bonferroni adjusted p = 

0.039). There were no enrichments for terms related to disease, gene family, or domain. In 

contrast, when we interrogated a list of 51 genes associated with orofacial clefts in human or 

mouse (Supplemental Table II), enrichment analysis returned annotations including 

“transcription factor”, “development”, “periderm”, and “epithelium”. Because the top genes 
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were not enriched for these terms, we may be uncovering new biological factors underlying 

risk for NSCL/P.

Discussion

Since the inception of GWAS, the common disease-common variant hypothesis has 

dominated the search for risk loci for common diseases [Pritchard and Cox 2002; Reich and 

Lander 2001]. As it became clear that common variants only accounted for a portion of the 

genetic variance, association studies turned to other types of variants and variants with lower 

minor allele frequencies [Manolio et al. 2009]. This study was motivated by the fact that 

multiple GWAS are estimated to account for only 20% of the heritability of NSCL/P. 

Although there are multiple possible study designs and statistical approaches to address a 

rare-variant hypothesis, this study focused on tests of low-frequency coding polymorphisms 

from the Illumina HumanCore+Exome Chip. This approach is limited to known variants, 

whereas study designs based on sequencing allow the inclusion of novel variants, that may 

be private in NSCL/P families. We were unable to identify a large number of genes for 

which low-frequency variants were strongly associated with NSCL/P; only one, N4BP2, 

surpassed our genome-wide significance threshold. We identified larger numbers of genes 

with suggestive evidence of association, particularly within genetically-defined ancestry 

groups. This is likely due to increased informativeness of variants within homogenous 

populations which increases power to detect an association. However, these subgroups are 

smaller, which simultaneously decreases power. This balance of factors that influence 

statistical power is particularly important to consider in rare-variant studies, which are 

notoriously underpowered.

Interestingly, we did not identify associations with known CL/P-risk genes, including those 

previously implicated in rare variant studies (e.g. MSX1, BMP4, GREM1) [Al Chawa et al. 

2014; Leslie and Murray 2012]. One possible reason for this apparent discrepancy is that 

previous resequencing studies focused on novel, private variants not present on commercial 

SNP panels while the present study is focused on low-frequency polymorphisms. Another 

possible reason is that many of the known risk genes are implicated in Mendelian diseases 

that include syndromic forms of OFCs. These genes tend to be evolutionarily constrained, so 

we would not expect to find deleterious coding polymorphisms in these genes. However, as 

OFCs are no longer considered lethal conditions in developed countries, relaxed selection 

may tolerate higher frequencies of deleterious alleles.

We were unable to identify a suitable replication cohort, as none of the existing GWAS 

consortia included the ExomeChip. As a consequence, these results should be viewed as 

preliminary until replicated by independent efforts. However, among our reported associated 

genes, there are several that could plausibly relate to CL/P risk, based on gene function or 

expression patterns. Two such genes are DSC1 and CDSN, which were annotated as being 

part of desmosomes, the intercellular junctions between apposing cells that are essential for 

mammalian development [Garrod and Chidgey 2008]. Desmosomes are composed of the 

proteins plakoglobin, plakophilin, and a desmosomal cadherin (e.g. desmocollin or 

desmoglein). DSC1 encodes one of the three desmocollin proteins found in humans. Its 

expression is confined to stratified epithelia, which includes adult skin and the tongue. In 
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addition, desmosomes include other associated accessory proteins that are necessary for 

adhesive function, such as corneodesmosin (CDSN), expressed in the epidermis, hair 

follicle, and hard palate epithelium [Jonca et al. 2011]. Inactivation of Cdsn in mice causes 

epidermal barrier dysfunction and hair follicle degeneration, resulting in postnatal death 

[Leclerc et al. 2009]. During palatogenesis, palatal shelves must adhere together prior to 

disintegration of the medial edge epithelium and formation of a complete palate; this timing 

coincides with an increase in desmosomes in the medial edge epithelium [Mogass et al. 

2000]. Thus an association between variants in these genes and risk of NSCL/P is 

biologically plausible although the effects of these specific variants are still unknown.

Low-frequency variants in PRTG, N4BP2, and AHRR demonstrated increased risk for 

NSCL/P. Of these genes, a possible role in craniofacial development is only apparent for 

PRTG, which encodes protogenin, an immunoglobulin domain-containing receptor involved 

in survival of rostral cephalic neural crest cells that form osteogenic and chondrogenic cells 

in the developing face. AHRR (aryl hydrocarbon receptor repressor) and N4BP2 (nedd4 

binding protein) do not appear to be strongly expressed in the developing face.

Among the group of genes for which low-frequency variants decreased risk for NSCL/P, 

there are several interesting genes already implicated in disorders with associated 

craniofacial features. EHMT1 (euchromatic histone methytransferase 1) mutations and 

microdeletions cause Kleefstra syndrome in humans, which includes a range of craniofacial 

dysmorphologies among the associated features [Kleefstra et al. 2006]. Similarly, mutations 

in KIAA0586 cause a range of ciliopathies, including Joubert syndrome [Alby et al. 2015; 

Bachmann-Gagescu et al. 2015; Malicdan et al. 2015]. Studies of the mouse and chicken 

homolog, TALPID3, indicate that the craniofacial defects in TALPID3 mutants are due to 

impaired hedgehog signaling [Buxton et al. 2004]. Finally, de novo mutations in POLD1 
(DNA polymerase delta) have been reported in mandibular hypoplasia, deafness, progeroid 

features, and lipodystrophy syndrome (MDPL syndrome) [Weedon et al. 2013]. In each of 

these cases, it appears that deleterious mutations cause craniofacial anomalies as part of 

syndromes. It is not clear what role the low-frequency coding variants have in decreasing 

risk of NSCL/P, if any.

In summary, here we provide evidence that a burden of low-frequency genetic variants in 

N4BP2, CDSN, AHRR, and PRTG increase risk for nonsyndromic NSCL/P; and that low-

frequency variants in other genes appear to reduce risk for NSCL/P. Although many of these 

genes have not previously been implicated in human craniofacial disorders, our findings are 

corroborated by craniofacial expression patterns or previous associations with craniofacial 

syndromes. Additional sequencing of these genes should be performed to identify additional 

risk variants and to replicate these results. Furthermore, as studies of low-frequency variants 

are underpowered, future studies in much larger sample sizes from all ancestry groups are 

needed to detect low-frequency variant associations in other genes. Overall, this study 

demonstrates that low-frequency variants are associated with NSCL/P and may thus 

contribute to some of the missing heritability of this common, complex structural birth 

defect.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results for gene-based tests (CMC) of variants less than 1%
Manhattan plots and QQ plots are shown for the all populations (A), Europeans (B), Asians 

(C), and Latin Americans (D). The grey line shows Bonferroni-corrected genome-wide 

significance (i.e. p<3.4 × 10-6) and the dashed grey line shows the suggestive threshold (i.e. 

p<1 × 10-4).
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Table I
Demographic details of cases and controls

Population Recruitment Site Controls NSCL/P Cases

Denmark 0 46

Hungary 253 105

Europeans Spain 0 33

Turkey 171 172

United States 411 220

Argentina 30 111

Colombia 277 681

Latin American Guatemala 208 102

Puerto Rico 106 84

United States 5 72

China 27 157

Asian India 38 51

Philippines 96 159

Unspecified (included in combined analysis) 4 2

Total 1626 1995
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